

HARDWARE VERIFICATION IN PYTHON

A Comprehensive Review

First Edition

Mark Chen

Angelia Technologies

www.ipcoredesign.net

Table of Contents

PREFACE

CHAPTER 00 FOREWORD

CHAPTER 01 WHY PYTHON?

PYTHON IS PROBABLY THE LANGUAGE IN ACADEMIA
PYTHON PROS AS PROGRAMMING LANGUAGE

MULTIPLE PROGRAMMING PARADIGMS
DYNAMIC TYPE SYSTEM
AUTOMATIC MEMORY MANAGEMENT
READABILITY AND MAINTAINABILITY
FASTER TO BUILD AND RUN
BROAD PYTHON ECOSYSTEM OF MODULES
PYTHON’S BROADER TALENT BASE
PYTHON’S WIDER RANGE OF APPLICATIONS WITH EASE
MANY INDUSTRY ACTORS SUPPORT AND USE PYTHON

PYTHON CONS AS PROGRAMMING LANGUAGE
VERIFICATION RELEVANT & MAIN PURPOSE

PURPOSE OF PYTHON VERIFICATION
PYTHON TO DEVELOP BRINGUP TESTS
USING PYTHON TO WRITE TESTS IN PYTEST
PROXY-DRIVEN TESTBENCHES WRITTEN IN PYTHON
EASIER TO CREATE TESTBENCHES FOR COMPLEX APPLICATIONS SUCH AS MACHINE LEARNING
PYTHON TO BOOST UVM FLOWS
CLIENT-SERVER STRUCTURE WITH CLIENT WRITTEN IN PYTHON
STUPID VERIFICATION TASKS
PYTHON FOR DESIGNERS WHO HATE THE VERIFICATION TEAM
LOAD TESTS DYNAMICALLY
CUT DOWN ON THE NUMBER OF MEMORY LEAKS

HARDWARE DESIGN COMPANIES USING PYTHON FOR VERIFICATION

CHAPTER 02 HARDWARE VERIFICATION (TESTBENCHES) IN PURE PYTHON

THE CODE MAC (MULTIPLY AND ACCUMULATE)
THE VERILOG TESTBENCH
THE GOLDEN MODEL IN PYTHON
THE AUTOMATED TESTBENCH IN PYTHON
THE ENTIRE PYTHON TEST SCRIPT WITH THE GOLDEN MODEL
TEST RESULTS
LINKS

CHAPTER 03 COCOTB: CO-ROUTINE AND CO-SIMULATION OF TESTBENCH IN
PYTHON

INTRODUCTION
WHY COCOTB?
SOME COCOTB SPECIFIC KEYWORDS
FANCY PYTHON FEATURES
THE FRAMEWORK
HOW DOES COCOTB WORK?
HOW IS COCOTB DIFFERENT?
COCOTB IN PYTHON VS. UVM IN SYSTEMVERILOG

PROPONENTS:
OPPONENTS:

SIMULATOR INDEPENDENT
SIMULATORS TO WORK WITH COCOTB
LANGUAGE INDEPENDENT
CODE YOUR TESTS IN PYTHON
NO ADDITIONAL RTL CODE NEEDED
MANIPULATE SIGNALS INSIDE YOUR MODULE FROM PYTHON
INTERFACE BETWEEN SIMULATOR AND PYTHON WITH COROUTINES AND CO-SIMULATION
POST-SYNTHESIS SIMULATIONS
TRIGGERS
YIELDING MULTIPLE TRIGGERS
COROUTINES
FORKING COROUTINES
JOINING FORKED COROUTINES
COMMUNICATING WITH COROUTINES
COROUTINES AND CLASSES
MODIFYING THE HIERARCHY
INSTALLING COCOTB
THE SIMPLEST EXAMPLE OF COCOTB VERIFICATION

THE VERILOG CODE
THE COCOTB TEST BENCH
THE CONTROL FILE (THE MAKEFILE):
RUNNING:

LINKS AND LITERATURE

CHAPTER 04 COCOTB DERIVATIVE – PYUVM: PYTHON IMPLEMENTATION OF
UVM USING COCOTB

INTRODUCTION
INSTALLATION
RUNNING FROM THE REPOSITORY
RUNNING THE SIMULATION

THE PYUVM TESTBENCH FOR THE TINYALU EXAMPLE
IMPORTING PYUVM
THE ALUTEST CLASSES
THE ALUENV CLASS
THE SCOREBOARD
THE MONITOR
COVERAGE
DRIVER
THE ALU SEQUENCE
ALU SEQUENCE ITEM

TRANSACTION-LEVEL MODELING (TLM) 1.0 IN PYUVM
BLOCKING OPERATIONS

Blocking put
Blocking get

NON-BLOCKING OPERATIONS
Non-blocking put
Non-blocking get

CONNECTING THE PRODUCER AND CONSUMER
THE CONFIGURATION DATABASE IN PYUVM

WHAT IS THE CONFIGDB()?
BASIC SETTING AND GETTING
UVM HIERARCHICAL CONTROL
PATH OVERRIDES
DEBUGGING THE CONFIGDB()

THE UVM FACTORY
INSTANTIATING OBJECTS USING THE FACTORY
OVERRIDING CLASSES
CLEARING OVERRIDES FROM THE FACTORY
PRINTING THE STATE OF THE FACTORY
CREATING A STRING FROM THE FACTORY

LOGGING IN PYUVM
LOGGING LEVELS
CHANGING THE LOGGING LEVEL
LOGGING MESSAGES IN PYUVM

Examining the log message
CONTROLLING OUTPUT

Writing to a file
Disabling Logging

ODDS AND ENDS
PYTHON AND SYSTEMVERILOG
PYUVM CHANGES TO RUN_TEST()

Passing classes to run_test()
pyuvm does not need uvm_test
Keeping singletons

ENABLING DEEP UVM LOG MESSAGES
Changing the default logging level
pyuvm Does Not Need uvm_subscriber

LINKS

CHAPTER 05 COCOTB DERIVATIVE - UVM PYTHON: UVM PORT TO PYTHON

WHY BOTHER?
INSTALLATION
RUNNING THE EXAMPLES
THE CODE
HDL SIMULATORS
RELATED PROJECTS
LINKS

CHAPTER 06 COCOTB DERIVATIVE – VARIFOG: OPEN SOURCE PYTHON AND
COCOTB BASED HARDWARE VERIFICATION TOOL

INTRODUCTION
TOOL LIMITATION
PROPOSED FLOW
VERIFOG TOOL GUI
CONFIGURATION
RUNNING THE TOOL

STEPS TO BE FOLLOWED IN THE TOOL:
TESTING EXAMPLE_ADDER.V

PARSE IT.
SET THE NUMBER OF TEST VECTORS AS 5.
VERIFY:
REGRESSION SUMMARY.

LITERATURE

CHAPTER 07 COCOTB DERIVATIVE – VERLPY WITH REINFORCEMENT LEARNING

REINFORCEMENT LEARNING (RL)
REINFORCEMENT LEARNING (RL), WHAT IS IT?
HOW TO FORMULATE A BASIC REINFORCEMENT LEARNING PROBLEM?

VERLPY
INSTALLATION
IDENTIFYING VERIFICATION GOALS AND DEFINING THE MDP (MARKOV DECISION PROCESS)
INHERITING COCOTBENV
INSTANTIATING THE VERIFICATION ENVIRONMENT OBJECT
ADDING COROUTINES TO TRACK EVENTS
CONFIGURATION FILE
FILLING IN THE VERIFICATION LOGIC
MULTI-STEP RL
MAKE FILE
LINKS

CHAPTER 08 COCOTB EXTENSION - COCOTB-COVERAGE

INTRODUCTION
INSTALLATION
CODE EXAMPLE
FIFO EXAMPLES
LINKS

CHAPTER 09 COCOTB EXTENSION - COCOTB-TEST

INTRODUCTION
USAGE
ARGUMENTS FOR SIMULATOR.RUN:
ENVIRONMENTAL VARIABLES
PYTEST ARGUMENTS
TIPS AND TRICKS
RUNNING (SOME) TESTS AND EXAMPLES FROM COCOTB

CHAPTER 10 COCOTB EXTENSION - USB TEST SUITE

INTRODUCTION
SETUP
PREREQUISITES
STEPS
USAGE
LINKS

CHAPTER 11 MYHDL - PYTHON BASED HARDWARE DESCRIPTION AND
VERIFICATION LANGUAGE

OVERVIEW
MODELING
SIMULATION AND VERIFICATION
CONVERSION TO VERILOG AND VHDL

INTRODUCTION TO MYHDL
A BASIC MYHDL SIMULATION
SIGNALS AND CONCURRENCY
PARAMETERS, PORTS AND HIERARCHY
TERMINOLOGY REVIEW
SOME REMARKS ON MYHDL AND PYTHON

SUMMARY AND PERSPECTIVE
INSTALLATION - CO-SIMULATION

INSTALLATION
Installation using pip
Installation using distutils

INSTALLATION FOR CO-SIMULATION
Setup ModelSim

HOW CAN I RUN CO-SIMULATION ON WINDOWS?
SIMULATION AND VERIFICATION

D FLIP-FLOP
Specification
Description
Simulation

CO-SIMULATION WITH VERILOG
INTRODUCTION
THE HDL SIDE
THE MYHDL SIDE
RESTRICTIONS

Only passive HDL can be co-simulated
Race Sensitivity Issues

IMPLEMENTATION NOTES
Icarus Verilog
Cver
Other Verilog Simulators
Interrupted System Calls
What about VHDL?

UNIT TESTING
DEFINING THE REQUIREMENTS
WRITING THE TEST FIRST
TEST-DRIVEN IMPLEMENTATION
ADDITIONAL REQUIREMENTS

CONVERSION TO VERILOG AND VHDL
INTRODUCTION
SOLUTION DESCRIPTION
FEATURES
THE CONVERTIBLE SUBSET

Introduction
Coding style
Supported types
Supported statements
Supported built-in functions
Docstrings

CONVERSION OF LISTS OF SIGNALS
CONVERSION OF INTERFACES
ASSIGNMENT ISSUES

Name assignment in Python
Signal assignment
intbv objects

EXCLUDING CODE FROM CONVERSION
USER-DEFINED CODE
TEMPLATE TRANSFORMATION
CONVERSION OUTPUT VERIFICATION BY CO-SIMULATION
CONVERSION OF TEST BENCHES
METHODOLOGY NOTES

Simulate first
Handling hierarchy

KNOWN ISSUES
AUTOMATIC CONVERSION TO VERILOG OR VHDL

LINKS & LITERATURE

CHAPTER 12 METAPROGRAMMING – FAULT: A PYTHON EMBEDDED DOMAIN-
SPECIFIC LANGUAGE FOR METAPROGRAMMING PORTABLE HARDWARE
VERIFICATION COMPONENTS

METAPROGRAMMING - WIKI
INTRODUCTION
OVERVIEW
DESIGN
FRONTEND: TESTER API
ACTIONS IR
BACKEND TARGETS
EVALUATION
RELATED WORK
SUPPORTED SIMULATORS
INSTALLATION

USING PIP
PYTHON 3.7.2
FROM SOURCE
COREIR

TESTER ABSTRACTION
TESTER ACTIONS
POKE
EVAL
EXPECT

STEP
EXECUTING TESTS

EXAMPLE
EXERCISE 1

EXTENDING THE TESTER CLASS
EXERCISE 2

PYTEST PARAMETRIZATION
EXERCISE 3
ASSUME/GUARANTEE
CONSTRAINED RANDOM
FORMAL VERIFICATION
EXERCISE 4
MORE EXAMPLES
HOW DO I GENERATE WAVEFORMS WITH FAULT?

LINKS & LITERATURE

CHAPTER 13 HARDWARE DESIGN LANGUAGE BASED ON PYTHON PYRTL

HARDWARE PROTOTYPING IN PYTHON - DEFINITION
INTRODUCTION
PYRTL IS
FEATURES INCLUDE:
PACKAGE CONTENTS
PYRTL WORKFLOW
AUTOMATIC INSTALLATION
CONFIGURATION FILE FOR THE SPHINX DOCUMENTATION BUILDER
DESIGN, SIMULATE, AND INSPECT IN 15 LINES
DEVELOPING AND VERIFYING WITH SCIKIT-LEARN
LINKS & LITERATURE

CIRCUITPYTHON
MICROPYTHON: AN INTRO TO PROGRAMMING HARDWARE IN PYTHON

CHAPTER 14 PYMT - PYTHON-BASED HARDWARE GENERATION, SIMULATION
AND VERIFICATION FRAMEWORK

PYMTL BASICS
PYMTL: A UNIFIED FRAMEWORK ENABLING MODELING TOWARDS LAYOUT
PYMTL: A UNIFIED FRAMEWORK FOR VERTICALLY INTEGRATED COMPUTER ARCHITECTURE RESEARCH
PYMTL FOR COMPUTER ARCHITECTURE TEST CHIPS
EIGHT FEATURES THAT MAKE PYMTL PRODUCTIVE
PYMTL3 WORKFLOW
PYMTL FRAMEWORK
PYMTL3 EMBEDDED DSL
WHAT IS PYMTL FOR AND (CURRENTLY) NOT FOR?
MULTI-LEVEL MODELING WITH PYMTL

PYMTLV3 HIGH-LEVEL MODELING
PYMTLV3 LOW-LEVEL MODELING

HIGHLY PARAMETRIZED STATIC ELABORATION
PYMTL PASSES
PYMTL/SYSTEMVERILOG INTEGRATION
PROPERTY-BASED RANDOM TESTING
FAST PURE-PYTHON SIMULATION

INSTALLATION
INSTALL THE PYMTL3 FRAMEWORK
INSTALL THE VERILATOR SIMULATOR

BITS ARITHMETICS
FULL ADDER EXAMPLE
REGISTER INCREMENTOR EXAMPLE
LINKS & LITERATURE

CHAPTER 15 PYHVL - A VERIFICATION TOOL

WHY PYTHON?
WHAT IS PYHVL?
DEVELOPMENT ENVIRONMENT
INSTALLATION
CONFIGURING PYTHON
LINKING WITH YOUR SIMULATOR
TESTING PYHVL
CONFIGURING PYHVL
SIMULATOR SPECIFIC CONCERNS
PYHVL AND GENERATORS

A BRIEF DESCRIPTION OF PYTHON GENERATOR FUNCTIONS
USING A GENERATOR IN A VERILOG SIMULATION

USING PYHVL
BUILDING THE TOP-LEVEL

For each output port
For each input port
For each inout port
For internal nodes

CONNECTING TO VERILOG NETS
TASKS AND TYPICAL PATTERNS
COMPOSING TASKS TO FORM TRANSACTIONS
USING CLASSES TO GROUP TASKS

EXAMPLES
OTHER EXAMPLES
CONSIDERATIONS IN IMPLEMENTING $PYHVL
A UVM LAYER FOR PYHVL
SIMPLIFIED VPI ITERATORS USING PYHVL GENERATORS
ABOUT GORDON MCGREGOR
LINKS & LITERATURE

CHAPTER 16 FPGA HARDWARE SIMULATION FRAMEWORK -
FPGA_HW_SIM_FWK

HARDWARE SIMULATION PYTHON - DEFINITION
ARCHITECTURE OVERVIEW
DETAILED DESIGN
CODE
APPLICATION GUI
FEATURES
LIMITATIONS
USE CASES
PROJECT SETUP

GENERATION OF EXECUTABLE FILE
SUMMARY
LINKS

CHAPTER 17 HARDWARE SIMULATION ENVIRONMENT INTEGRATING PYTHON
AND VHDL - PYHDL

INTRODUCTION
FEATURES
REQUIREMENTS
INSTALL PYVHDL
ZAMIACAD
RUN THE PLASMA DEMO

SETUP A NEW PROJECT
IMPORT THE ARCHIVED PROJECT
CONFIGURE A SIMULATION
RUN THE SIMULATION

WRITE A PYTHON TESTBENCH
LINKS

CHAPTER 18 SPICE-LIKE ELECTRONIC CIRCUIT SIMULATOR WRITTEN IN
PYTHON - AHKAB

INTRODUCTION
SUPPORTED SIMULATIONS
DOWNLOAD AND INSTALL

REQUIREMENTS
INSTALL WITH DISTUTILS

RUN STANDALONE
DOCUMENTATION
SIMULATING FROM PYTHON

A FIRST OP EXAMPLE
SIMULATING FROM THE COMMAND LINE
LINKS

CHAPTER 19 CO-SIMULATION OF HDL USING PYTHON AND MATLAB -
COSIMTCP

INTRODUCTION
CO-SIMULATION ARCHITECTURE

PROTOCOL
SERVER
CLIENT

DESIGN FLOW
EXAMPLE PROJECT SHOWING THE BASIC IDEA OF THE COSIMTCP

SERVER SIDE
ModelSim
Vivado

CLIENT SIDE
Python

LINKS & LITERATURE

CHAPTER 20 CPU SIMULATOR WRITTEN IN PYTHON - PYCPUSIMULATOR

WHAT ARE THE MAIN FEATURES ?
INSTALLATION

DEPENDENCIES
INSTALLATION FROM PYPI REPOSITORY
INSTALLATION FROM SOURCE

AVR DATASHEET
ATMEGA640/1280/1281/2560/2561 REGISTER SUMMARY
HOW TO EXTRACT DATA FROM ATMEL DATASHEETS
AVR REGISTERS

SREG – AVR Status Register
General Purpose Register File
RAMPZ – Extended Z-pointer Register for ELPM/SPM
EIND – Extended Indirect Register

AVR MEMORIES
REGISTER SUMMARY
INSTRUCTIONS

MICRO CODE LANGUAGE
INSTRUCTION SET YAML FORMAT
LINKS & LITERATURE

CHAPTER 21 PYTHON LIBRARY FOR INTERFACING TO VARIOUS SIMULATORS -
PYOPUS

INTRODUCTION
WHAT PACKAGES DOES PYOPUS DEPEND ON
SUPPORTED SIMULATORS
SUPPORTED OPERATING SYSTEMS
BUILDING PYOPUS FROM SOURCES

REQUIREMENTS
UNPACKING PYOPUS SOURCES
BUILDING PYOPUS FOR LINUX (WHEEL, DEMOS AND DOCUMENTATION, AND SOURCE)
BUILDING FOR WINDOWS (WHEEL ONLY)
INSTALL PYOPUS FOR DEVELOPMENT (IN SOURCE FOLDERS)

PYOPUS DESIGN AUTOMATION GUI
STARTING THE GUI
THE GUI WINDOW
SETTING UP A PROJECT

Netlist fragments, models, and the project file
Defining variables
Simulator setup
Analyses
Parameters
Setting up the operating parameters.
Setting up the statistical parameters.

A SIMPLE CIRCUIT EVALUATION TASK
Creating a new evaluation task
Task settings
Starting the task

Viewing the log file
Using the log file for debugging
Viewing the Results and Postprocessing Saved Waveforms
Opening and browsing the results

EVALUATING PERFORMANCE MEASURES ON SAVED WAVEFORMS
Visualization of saved waveforms

POSTPROCESSING SETUP FILE
LINKS

CHAPTER 22 PYTHON INTERFACE TO THE NGSPICE AND XYCE CIRCUIT
SIMULATORS - PYSPICE

WHAT IS PYSPICE ?
WHAT ARE THE MAIN FEATURES ?
INSTALL ON WINDOWS
INSTALL A MORE RECENT VERSION FROM GITHUB USING PIP
INSTALLATION FROM SOURCE
HOW TO RUN THESE EXAMPLES
NETLIST MANIPULATIONS
FAST FOURIER TRANSFORM
LINKS

CHAPTER 23 CONSTRAINTS AND COVERAGE - PYVSC PACKAGE

INTRODUCTION
WHAT IS PYVSC?

FUNCTIONAL VERIFICATION AND CONSTRAINED RANDOM STIMULUS
KEY REQUIREMENTS

PYVSC BASICS
PYVSC FEATURES
DEBUG
INSTALLING PYVSC
PYVSC CONSTRAINTS

CONSTRAINT BLOCKS
CONSTRAINT EXPRESSIONS
CONSTRAINT STATEMENTS
CUSTOMIZING DECLARED CONSTRAINTS

PYVSC FUNCTIONAL COVERAGE
COVERGROUPS
COVERPOINTS, BINS, AND CROSSES
SAMPLING COVERAGE DATA
REPORTING

ENVIRONMENT INTEGRATION
RANDOM SEED MANAGEMENT
SAVING COVERAGE DATA

LINKS & LITERATURE

CHAPTER 24 CONSTRAINTS AND COVERAGE, YOSYSHQ/MCY - MUTATION
COVER WITH YOSYS

INTRODUCTION TO MUTATION COVERAGE WITH YOSYS (MCY)
DEPENDENCIES
INSTALLATION
INSTALLING TABBY CAD SUITE OR OSS CAD SUITE

INSTALLING FROM SOURCE
METHODOLOGY

EQUIVALENCE CHECK
FUNDAMENTAL PRINCIPLE

COMMAND REFERENCE
EXAMPLE
CONFIGURATION FILE FORMAT
FORMAL EQUIVALENCE TEST
TAGGING LOGIC

LOGIC
REPORT
TESTS

WRITING A TEST SCRIPT
EXPORTING THE MUTATED SOURCE
RUNNING THE TESTBENCH
REPORTING THE RESULT
RUNNING MCY
RUNNING THE TESTS
TESTBENCH SCRIPT
WRITING THE EQUIVALENCE CHECK

CREATING THE MITER CIRCUIT
SETTING UP THE TEST SCRIPT FOR THE EQUIVALENCE CHECK

Mutation export
RUNNING THE EQUIVALENCE CHECK
REPORTING THE RESULT

MUTATION EXPORT OPTIONS
THE CREATE_MUTATED.SH SCRIPT
THE TASK MUTATION LIST INPUT.TXT
WRITING A CUSTOM MUTATION EXPORT SCRIPT
THE YOSYS MUTATE COMMAND
MUTATION GENERATION
APPLYING A MUTATION
LINKS & LITERATURE

CHAPTER 25 SYMBOLIC MODEL CHECKING - COSA (COREIR SYMBOLIC
ANALYZER)

SYMBOLIC MODEL CHECKING FOR HARDWARE VERIFICATION, WHAT IT IS?
INTRODUCTION
OVERVIEW
BACKGROUND

MODEL CHECKING
SYMBOLIC TRANSITION SYSTEM
LINEAR TEMPORAL LOGIC (LTL)

INPUT FORMATS
VERILOG
SYSTEMVERILOG
VERILOG/SYSTEMVERILOG WITH YOSYS
COREIR

BTOR2
SYMBOLIC TRANSITION SYSTEM (STS)
EXPLICIT STATE TRANSITION SYSTEM (ETS)
INITIAL STATE CONSTRAINTS (INIT)

PROPERTIES
INVARIANT
LINEAR TEMPORAL LOGIC
SYNTACTIC SUGAR
GENERATORS

VERIFICATION DEFINITION
ENVIRONMENTAL ASSUMPTIONS
SIMULATION
SAFETY AND LTL VERIFICATION

Formula Syntax
EQUIVALENCE CHECKING
PARAMETRIC MODEL CHECKING

PROBLEM FILES
USEFUL HINTS
EXAMPLES

RESULTS ANALYSIS
COUNTEREXAMPLE TRACES

Finite traces
Infinite traces

GOOD PRACTICE
ENCODINGS
PERFORMANCE OPTIMIZATIONS

LEMMAS
STRATEGY
ASSUME IF TRUE
CONE OF INFLUENCE
CIRCUIT OPTIMIZING
FILES CACHING

DEBUGGING
LINKS AND LITERATURE

CHAPTER 26 FRONT-END DRIVER PROGRAM YOSYSHQ/SYMBIYOSYS

INTRODUCTION
GETTING STARTED
FIRST IN, FIRST OUT (FIFO) BUFFER
VERIFICATION PROPERTIES
SYMBIYOSYS
EXERCISE
CONCURRENT ASSERTIONS
LINKS

CHAPTER 27 AMIQ OFC - OPEN-SOURCE FRAMEWORK FOR CO-EMULATION
USING PYNQ

HARDWARE EMULATION IN PYTHON - DEFINITION
WHAT IS CO-EMULATION?
WHAT IS PYNQ?

WHAT IS OFC?
BASIC CONCEPTS

LAYER 1: HOST – VERIFICATION ENVIRONMENT
LAYER 2: PYNQ – PROCESSING SYSTEM
LAYER 3: PYNQ – PROGRAMMABLE LOGIC

OFC SV-PYTHON CONNECTION
1. OFC DRIVER
2. OFC SERVER CONNECTOR
3. OFC PYTHON SERVER.
4. TESTBENCH

OFC PYTHON-FPGA INTERACTION
1. CONFIGURING THE PL SIDE OF THE PYNQ BOARD.
2. MA TO THE PL SIDE.
3. L SIDE THROUGH DMA.

FPGA
INTEGRATION

STEP 1: REPLACING THE ORIGINAL DRIVERS WITH THE OFC DRIVER
STEP 2: CREATING A SPECIFIC OFC MONITOR
STEP 3: COMPUTING RESPONSE WITHIN THE PYTHON SERVER
STEP 4: CREATING HDL COMPONENTS

CONCLUSIONS
DVCON U.S. 2021 EXPERIENCE
RESOURCES
LINKS & LITERATURE

CHAPTER 28 EMULATE INTEGRATED CIRCUITS IN PYTHON - ICEMU

ICEMU - EMULATE INTEGRATED CIRCUITS
SEE IT IN ACTION
WHERE'S THE PYTHON IMPLEMENTATION?
REQUIREMENTS
HOW TO USE
EXAMPLES
DOCUMENTATION
LICENSE

PREFACE

I write this book because I cannot find a similar one that can help me grasp a full understanding of how a traditional
programming language like Python can be used as a primary verification language, as I previously surmised that
verification must be always done with a special language called Hardware Verification Language (HVL), such as
SystemVerilog, the e Language, OpenVera and a bunch of others. During my design of IP (Intellectual Property) core, I
have met with a number of test scripts, many of them are written in Python and other languages such as Matlab, and
even Java. In other words, we don’t necessarily have to learn the overly sophisticated verification language of
SystemVerilog in order to verify a hardware design, especially for smaller designs.

On other hand, I cannot find a similar book describing in full about the use of Python language and its rich sets of
libraries for hardware verification. There you can find various sets of libs here and there sporadically about Python
modules used for verification. In my design career, I need to compile a list of all these modules so that I can use them
for my present as well as future design and verification projects. And this book is largely the result of my collection
work of the designs.

How to Use This Book

This book is provided in PDF format in digital form, no paper work will be produced. We are in digital age,

yeah? To save money for publishing, to facilitate the distribution, to save our earth and also to save money

for our readers, I refuse to publish anything in paper forms, and I also refuse to let the expensive publishing

houses and online platforms to do the same. Traditional printing is gone, forever. At time of self-publishing,

we are all our own publishing houses, aren’t we?

No contents of the book shall be reproduced, copied, transformed in any form without prior permission of the

book author unless formally approved in written, electronically of course.

MC

Nov. 29, 2022

