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PREFACE 

 
I write this book because I cannot find a similar one that can help me grasp a full understanding of how a traditional 
programming language like Python can be used as a primary verification language, as I previously surmised that 
verification must be always done with a special language called Hardware Verification Language (HVL), such as 
SystemVerilog, the e Language, OpenVera and a bunch of others. During my design of IP (Intellectual Property) core, I 
have met with a number of test scripts, many of them are written in Python and other languages such as Matlab, and 
even Java. In other words, we don’t necessarily have to learn the overly sophisticated verification language of 
SystemVerilog in order to verify a hardware design, especially for smaller designs. 
 
On other hand, I cannot find a similar book describing in full about the use of Python language and its rich sets of 
libraries for hardware verification. There you can find various sets of libs here and there sporadically about Python 
modules used for verification. In my design career, I need to compile a list of all these modules so that I can use them 
for my present as well as future design and verification projects. And this book is largely the result of my collection 
work of the designs. 
 

How to Use This Book 
 

This book is provided in PDF format in digital form, no paper work will be produced. We are in digital age, 

yeah? To save money for publishing, to facilitate the distribution, to save our earth and also to save money 

for our readers, I refuse to publish anything in paper forms, and I also refuse to let the expensive publishing 

houses and online platforms to do the same. Traditional printing is gone, forever. At time of self-publishing, 

we are all our own publishing houses, aren’t we? 

 

No contents of the book shall be reproduced, copied, transformed in any form without prior permission of the 

book author unless formally approved in written, electronically of course. 
 
 

MC 

Nov. 29, 2022 
 
 
 
 
 


